
Journal of Global Optimization 25: 377–406, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

377

Solving the Simple Plant Location Problem using a
Data Correcting Approach

BORIS GOLDENGORIN1, GERT A. TIJSSEN1, DIPTESH GHOSH2 and
GERARD SIERKSMA1

1Faculty of Economic Sciences, University of Groningen, Groningen, The Netherlands E-mail:
B.Goldengorin@eco.rug.nl
2P&QM Area, Indian Institute of Management, Ahmedabad, India E-mail: diptesh@iimahd.ernet.in

Abstract. The Data Correcting Algorithm is a branch and bound type algorithm in which the data of
a given problem instance is ‘corrected’ at each branching in such a way that the new instance will be
as close as possible to a polynomially solvable instance and the result satisfies an acceptable accuracy
(the difference between optimal and current solution). In this paper the data correcting algorithm is
applied to determining exact and approximate optimal solutions to the simple plant location problem.
Implementations of the algorithm are based on a pseudo-Boolean representation of the goal function
of this problem, and a new reduction rule. We study the efficiency of the data correcting approach
using two different bounds, the Khachaturov-Minoux bound and the Erlenkotter bound. We present
computational results on several benchmark instances, which confirm the efficiency of the data-
correcting approach.

AMS 2000 Mathematics Subject Classification: 90B80, 90C59

Key words: Simple plant location problem, Pseudo-Boolean representation, Hammer function, Branch
and bound, Preprocessing

1. Introduction

The Simple Plant Location Problem (SPLP) takes a set I = {1, 2, . . . , m} of sites
in which plants can be located, a set J = {1, 2, . . . , n} of clients, each having a unit
demand, a vector F = (fi) of fixed costs for setting up plants at sites i ∈ I , and a
matrix C = [cij] of transportation costs from i ∈ I to j ∈ J as input. It computes a
set P �, ∅ ⊂ P � ⊆ I , at which plants can be located so that the total cost of meeting
the demands of all the clients is minimal. The costs involved in meeting the client
demands include the fixed costs of setting up plants, and the transportation cost
of supplying clients from the plants that are set up. A detailed introduction to this
problem has appeared in Cornuejols et al. (1990). The SPLP forms the underly-
ing model in several combinatorial problems, like set covering, set partitioning,
information retrieval, simplification of logical Boolean expressions, airline crew
scheduling, vehicle despatching Christofides, 1975), assortment (Beresnev, 1978;
Goldengorin, 1995; Jones et al., 1995; Pentico, 1976; Pentico, 1988; Tripathy et

378 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

al., 1999), and is a subproblem for various location analysis problems (Revelle and
Laporte, 1996).

The SPLP is N P -hard (Cornuejols, 1990), and several exact and heuristic
algorithms for solving it have been discussed in the literature. Most of the exact
algorithms are based on a mathematical programming formulation of the SPLP
(see for example, Schrage, 1975; Morris, 1978; Held et al., 1974; Cornuejols et al.,
1977b; Cornuejols and Thizy, 1982; and Garfinkel et al., 1974). Polyhedral results
for the SPLP polytope have been reported in Trubin (1969), Balas and Padberg
(1972), Mukendi (1975), Cornuejols et al. (1977a), Krarup and Pruzan (1983), Cho
et al. (1983a) and Cho et al. (1983b). In theory, these results allow us to solve the
SPLP by applying the simplex algorithm to the strong linear programming relaxa-
tion, with the additional stipulation that a pivot to a new extreme point is allowed
only when this new extreme point is integral. However, efficient implementations
of this pivot rule are not available. Beasley (1993a) reported computational ex-
periments with Lagrangian heuristics for SPLP instances. Körkel (1989) proposed
algorithms based on refinements to a dual-ascent heuristic procedure to solve the
dual of a linear programming relaxation of the SPLP ((Körkel, 1989)), combined
with the use of the complementary slackness conditions to construct primal solu-
tions (Erlenkotter, 1978). An annotated bibliography is available in Labbé and
Louveaux (1997). An exact algorithm based on a pseudo-Boolean representation of
the problem has been reported in Goldengorin et al. (2001). It uses a preprocessing
rule to reduce the size of its input. The preprocessing rule is due to Khumawala
(1972).

It is common knowledge that exact algorithms for N P -hard problems in gen-
eral, and for the SPLP in particular, spend only about 10% of the execution time
to find an optimal solution. The remaining time is spent proving the optimality of
the solution. In this paper, our aim is to reduce the amount of time spent proving
the optimality of the solution obtained. We propose a data correcting algorithm
for the SPLP that is designed to output solutions with a pre-specified acceptable
accuracy α. This means that the difference between the cost of the solution output
by the algorithm is no more than α more than the cost of an optimal solution.
(Note that α = 0 results in an exact algorithm for the SPLP, while α = ∞ results
in a fast greedy algorithm.) The objective function of the SPLP is supermodular
(see Cornuejols et al., 1990) and so, the data correcting algorithm described in
Goldengorin et al. (1999) can be used to solve the SPLP. In fact, Goldengorin
et al. (1999) contains an example to that effect. However, it can be made much
more efficient; for example, by using SPLP-specific bounds (used in Erlenkot-
ter, 1978) and preprocessing rules (used in Khumawala, 1972). The algorithm
described here uses a pseudo-Boolean representation of the SPLP, due originally
to Hammer (1968) (see also Beresnev (1973)). It uses a new reduction procedure
based on data correcting, which is stronger than the preprocessing rules used in
Khumawala (1972) to reduce the original instance to a smaller ‘core’ instance, and
then solves it using a procedure based on preliminary preservation and data cor-

A DATA CORRECTING APPROACH FOR THE SPLP 379

recting (see Goldengorin, 1999). Computational experiments with this algorithm
on benchmark instances of the SPLP are also described in the paper. We show how
the use of preprocessing and bounds specific to the SPLP enhance the performance
of the data-correcting algorithm. This algorithm is based on three concepts found
in the literature, a pseudo-Boolean representation of the SPLP, data-correcting, and
the preliminary preservation procedure. The next section of this paper therefore
contains a brief exposure to these concepts. We describe the new algorithm in Sec-
tion 3 and present the results of our computational experiments with it in Section 4.
We finally conclude the paper in Section 5 with a summary of the work presented
here and discussions.

2. Preliminaries from the Literature

In this section we describe a pseudo-Boolean representation of the SPLP that we
use in our algorithm (Subsection 2.1), an introduction to data correcting (Subsec-
tion 2.2), and a description of the preliminary preservation procedure (Subsec-
tion 2.3).

2.1. A PSEUDO-BOOLEAN REPRESENTATION OF THE SPLP

The pseudo-Boolean approach to solving the SPLP (Hammer, 1968; Beresnev,
1973) is a penalty-based approach that relies on the fact that any instance of the
SPLP has an optimal solution in which each client is supplied by exactly one plant.
This implies, that in an optimal solution, each client will be served fully by the
plant located closest to it. Therefore, it is sufficient to determine the sites where
plants are to be located, and then use a minimum weight matching algorithm to
assign clients to plants.

An instance of the SPLP can be described by a m-vector F = (fi), and a m×n

matrix C = [cij]; m,n � 1. We will use the m× (n+ 1) augmented matrix [F |C]
as a shorthand for describing an instance of the SPLP. The total cost f[F |C](P)

associated with a subset P of I consists of two components, namely the fixed costs∑
i∈P fi and the transportation costs

∑
j∈J min{cij |i ∈ P }; i.e.

f[F |C](P) =
∑
i∈P

fi +
∑
j∈J

min{cij |i ∈ P },

and the SPLP is the problem of finding

P � ∈ arg min{f[F |C](P) : ∅ ⊂ P ⊆ I }. (1)

In the remainder of this subsection we describe the pseudo-Boolean formulation
of the SPLP due to Hammer (1968) (see also Beresnev (1973)).

A m × n ordering matrix � = [πij] is a matrix each of whose columns �j =
(π1j , . . . , πmj)

T define a permutation of 1, . . . , m. Given a transportation matrix

380 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

C, the set of all ordering matrices � such that cπ1j j � cπ2j j � · · · � cπmj j for
j = 1, . . . , n, is denoted by perm(C).

Defining

yi =
{

0 if i ∈ P

1 otherwise,
for each i = 1, . . . , m (2)

we can indicate any solution P by a vector y = (y1, y2, . . . , ym). The fixed cost
component of the total cost can be written as

FF (y) =
m∑

i=1

fi(1− yi). (3)

Given a transportation cost matrix C, and an ordering matrix � ∈ perm(C), we
can denote differences between the transportation costs for each j ∈ J as

�c[0, j] = cπ1j j , and

�c[l, j] = cπ(l+1)j j − cπlj j , l = 1, . . . , m− 1.

Note that �c[l, j] � 0, even if the transportation cost matrix C contains negative
entries. The transportation costs of supplying any client j ∈ J from any open plant
can be expressed in terms of the �c[·, j] values. It is clear that we have to spend
at least �c[0, j] in order to satisfy j ’s demand since this is the cheapest cost of
satisfying j . If no plant is located at the site closest to j , i.e., yπ1j = 1, we try to
satisfy the demand from the next closest site. In that case, we spend an additional
�c[1, j]. Continuing in this manner, the transportation cost of supplying j ∈ J is

min{cij |i ∈ P } = �c[0, j] +�c[1, j] · yπ1j +�c[2, j]yπ1j yπ2j

+ · · · +�c[m− 1, j]yπ1j · · · yπ(m−1)j

= �c[0, j] +
m−1∑
k=1

�c[k, j]
k∏

r=1

yπrj
,

so that the transportation cost component of the cost of a solution y corresponding
to an ordering matrix � ∈ perm(C) is

TC,�(y) =
n∑

j=1

{
�c[0, j] +

m−1∑
k=1

�c[k, j]
k∏

r=1

yπrj

}
. (4)

Combining (3) and (4), the total cost of a solution y to the instance [F |C] cor-
responding to the ordering matrix � ∈ perm(C) is given by the pseudo-Boolean

A DATA CORRECTING APPROACH FOR THE SPLP 381

polynomial

f[F |C],�(y) = FF (y)+ TC,�(y)

=
m∑

i=1

fi(1− yi)+
n∑

j=1

{
�c[0, j] +

m−1∑
k=1

�c[k, j]
k∏

r=1

yπrj

}
. (5)

It can be shown (Goldengorin et al., 2000) that the total cost function f[F |C],�(·)
is identical for all � ∈ perm(C). We call this pseudo–Boolean polynomial the
Hammer function H[F |C](y) corresponding to the SPLP instance [F |C] and � ∈
perm(C). In other words

H[F |C](y) = f[F |C],�(y) where � ∈ perm(C). (6)

We can now formulate (1) in terms of Hammer functions as

y� ∈ arg min{H[F |C](y) : y ∈ {0, 1}m, y �= 1}. (7)

Notice that if for clients p and q, {π1p, π2p, . . . , πkp} = {π1q, π2q, . . . ,

πkq} for k � n, then the kth order terms in the Hammer function corresponding to
these two clients can be aggregated. This implies that in general, the Hammer func-
tion will be a more space-efficient representation of the SPLP than the conventional
[F |C] matrix. This representation also makes it easier to construct data structures
that allow efficient updating operations in the algorithm presented in Section 3.

As an example, consider the SPLP instance:

[F |C] =




9 7 12 22 13
4 8 9 18 17
3 16 17 10 27
6 9 13 10 11


 . (8)

Two possible ordering matrices corresponding to C are

�1 =




1 2 3 4
2 1 4 1
4 4 2 2
3 3 1 3


 and �2 =




1 2 4 4
2 1 3 1
4 4 2 2
3 3 1 3


 . (9)

The Hammer function can be computed using either �1 or �2. If we use �1

for our calculations, we obtain the Hammer function as H[F |C](y) = {9(1− y1)+
4(1− y2)+ 3(1− y3)+ 6(1− y4)} + {7+ 1y1 + 1y1y2 + 7y1y2y4} + {9+ 3y2 +
1y1y2+4y1y2y4}+{10+0y3+8y3y4+4y2y3y4}+{11+2y4+4y1y4+10y1y2y4}
= 59 − 8y1 − y2 − 3y3 − 4y4 + 2y1y2 + 4y1y4 + 8y3y4 + 21y1y2y4 + 4y2y3y4.

382 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

If we use �2, the contribution of the third client towards the Hammer function is
{10 + 0y4 + 8y3y4 + 4y2y3y4} instead of {10 + 0y3 + 8y3y4 + 4y2y3y4}. Clearly,
this does not affect the Hammer function.

2.2. FUNDAMENTALS OF DATA CORRECTING

Data correcting is a method in which we alter the data in a problem instance to con-
vert it to an instance that is easily solvable. This methodology was first introduced
in Goldengorin (1983). In this subsection we illustrate the method for the SPLP
when the instance data is represented by the fixed cost vector and the transportation
cost matrix. However it can be applied to a wide variety of optimization problems,
and in particular, to the SPLP represented as a Hammer function.

Consider an instance [F |C] of the SPLP. The objective of the problem is to
compute a set P , ∅ ⊂ P ⊆ I , that minimizes f[F |C](P). Also consider a SPLP
instance [S|D] that is known to be polynomially solvable. Let P �

[F |C] and P �
[S|D]

be optimal solutions to [F |C] and [S|D], respectively. Let us define the proximity
measure ρ([F |C], [S|D]) between the two instances as

ρ([F |C], [S|D]) =
∑
i∈I
|fi − si | +

∑
j∈J

max{|cij − dij | : i ∈ I }. (10)

We use max{|cij − dij | : i ∈ I } in (10) instead of the expression
∑

i∈I |cij − dij |
since, in an optimal solution, the demand of each client is satisfied by a single fa-
cility, only one element in each column in the transportation matrix will contribute
to the cost of the optimal solution.

Notice that ρ([F |C], [S|D]) is defined only when the instances [F |C] and
[S|D] are of the same size. Also note that the value of ρ(·,·) it can be computed
in time polynomial in the size of the two instances. The following theorem, which
forms the basis of data correcting, shows that ρ([F |C], [S|D]) is an upper bound
to the difference between the unknown optimal costs for the SPLP instances [F |C]
and [S|D].

THEOREM 1. Let [F |C] and [S|D] be two SPLP instances of the same size, and
let P �

[F |C] and P �
[S|D] be optimal solutions to [F |C] and [S|D] respectively. Then

|f[F |C](P �
[F |C])− f[S|D](P �

[S|D])| � ρ([F |C], [S|D]).

Proof. There are two cases to consider.
Case 1: f[F |C](P �

[F |C]) � f[S|D](P �
P [S|D]), and

Case 2: f[F |C](P �
[F |C]) > f[S|D](P �

[S|D]). We only prove Case 1 here; the proof of

A DATA CORRECTING APPROACH FOR THE SPLP 383

Case 2 is similar to the proof of Case 1.

f[F |C](P �
[F |C])− f[S|D](P �

[S|D])
� f[F |C](P �

[S|D])− f[S|D](P �
[S|D])

=
∑

i∈P�[S|D]

[fi − si] +
∑
j∈J

(min{cij : i ∈ P �
[S|D]} −min{dij : i ∈ P �

[S|D]}).

Let cic(j)j = min{cij : i ∈ P �
[S|D]} and did (j)j = min{dij : i ∈ P �

[S|D]}. Then

f[F |C](P �
[F |C])− f[S|D](P �

[S|D])

�
∑

i∈P�[S|D]

[fi − si] +
∑
j∈J
[cic(j)j − did (j)j]

�
∑

i∈P�[S|D]

[fi − si] +
∑
j∈J
[cid (j)j − did (j)j]

�
∑

i∈P�[S|D]

[fi − si] +
∑
j∈J
[max{cij − dij : i ∈ P �

[S|D]}]

�
∑

i∈P�[S|D]

|fi − si | +
∑
j∈J
[max{|cij − dij | : i ∈ I }]

�
∑
i∈I
|fi − si| +

∑
j∈J
[max{|cij − dij | : i ∈ I }]

= ρ([F |C], [S|D]).
�

Theorem 1 implies that if we have an optimal solution to a SPLP instance [S|D],
then we have an upper bound for all SPLP instances [F |C] of the same size. This
upper bound is actually the distance between the two instances, distances being
defined by the accuracy measure (10). Also if the solution to [S|D] can be com-
puted in polynomial time (i.e., [S|D] belongs to a polynomially solvable special
case) then an upper bound to the cost of an as yet unknown optimal solution to
[F |C] can be obtained in polynomial time. If the distance between the instances
is not more than a prescribed accuracy α, then the optimal solution of [S|D] is, in
fact, a solution to [F |C] within the prescribed accuracy. This theorem forms the
basis of data correcting.

In general, the data correcting procedure works as follows. It assumes that
we know a class of polynomially solvable instances of the problem. It starts by
choosing a polynomially solvable SPLP instance [S|D] from that class of instances,
preferably as close as possible to the original instance [F |C]. If ρ([F |C], [S|D]) �
α, the procedure terminates and returns an optimal solution to [S|D] as an ap-
proximation of an optimal solution to [F |C]. The instance [F |C] is said to be
‘corrected’ to the instance [S|D], which is solved polynomially to generate the

384 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

solution output by the procedure. Otherwise, the set of feasible solutions for the
problem is partitioned into two subsets. For the SPLP, one of these subsets is com-
prised of solutions that locate a plant at a given site, and the other is comprised of
solutions that do not. The two new instances thus formed are perturbed in a way that
they both change into instances that are within a distance α from a polynomially
solvable instance. The procedure is continued until an instance with a proximity
measure not more than α is obtained for all the subsets generated.

2.3. THE PRELIMINARY PRESERVATION PROCEDURE

The preliminary preservation procedure is one that tries to reduce the set of solu-
tions in which to search for optimal solutions to a given instance. It applies to the
minimization of supermodular (and maximization of submodular) functions. The
function f[F |C](P) is called supermodular on [PL, PU] = {P : PL ⊆ P ⊆ PU }
with subsets PL and PU of I , such that ∅ ⊂ PL ⊆ PU ⊆ I if for each P,Q ∈
[PL, PU] it holds that f[F |C](P)+f[F |C](Q) � f[F |C](P∪Q)+f[F |C](P∩Q). Since
the objective function of the SPLP is supermodular, we can apply the procedure to
this problem.

Consider PL as the set of sites where plants will definitely be located in an
optimal solution, and PU as the set of all candidate locations for locating plants in
optimal solutions. In other words, plants will definitely not be located in any site
belonging to I \ PU in an optimal solution. Let f �

[F |C][PL, PU] = min{f[F |C](P) :
PL ⊆ P ⊆ PU }. The following result is a straightforward application of Theorem 1
in Goldengorin et al. (1999) to the SPLP.

THEOREM 2. Consider PL, PU ⊆ I , such that ∅ ⊂ PL ⊆ PU ⊆ I , and let
k ∈ PU \ PL. Then the following assertions hold:
(a) f �

[F |C][PL, PU \ {k}] − f �
[F |C][PL ∪ {k}, PU] �

f[F |C](PL)− f[F |C](PL ∪ {k});
(b) f �

[F |C][PL ∪ {k}, PU] − f �
[F |C][PL, PU \ {k}] �

f[F |C](PU)− f[F |C](PU \ {k}).

Proof. We will prove part (a) here. The proof of part (b) is similar. Let P ∈
[PL, PU \ {k}], with f[F |C](P ∪ {k}) = f �

[F |C][PL ∪ {k}, PU]. It then follows from
the definition of supermodularity that f[F |C](PL ∪ {k})+ f[F |C](P) � f[F |C](P ∪
{k})+ f[F |C](PL), which implies that f[F |C](P) � f[F |C](P ∪ {k})+ f[F |C](PL)−
f[F |C](PL ∪ {k}). Hence, f �

[F |C][PL, PU \ {k}] � f[F |C](P ∪ {k}) + f[F |C](PL) −
f[F |C](PL ∪ {k}). Thus f �

[F |C][PL, PU \ {k}]− f �
[F |C][PL ∪ {k}, PU] � f[F |C](PL)−

f[F |C](PL ∪ {k}), which proves part (a). �
An immediate corollary to Theorem 2 is the following.

COROLLARY 1. Consider PL, PU ⊆ I , such that ∅ ⊂ PL ⊆ PU ⊆ I , and let
k ∈ PU \ PL. Then the following preservation rules are valid:

A DATA CORRECTING APPROACH FOR THE SPLP 385

Preservation Rule 1: If f[F |C](PU \ {k}) � f[F |C](PU), then
f �
[F |C][PL, PU] = f �

[F |C][PL ∪ {k}, PU] �
f �
[F |C][PL, PU \ {k}].

Preservation Rule 2: If f[F |C](PL ∪ {k}) � f[F |C](PL), then
f �
[F |C][PL, PU] = f �

[F |C][PL, PU \ {k}] �
f �
[F |C][PL ∪ {k}, PU].

Informally, the Preservation Rule 1 means that with PL \ {k} open, the fixed cost
of k is less than the transportation savings gained by having k open. The Preser-
vation Rule 2 means that with PL open, the fixed cost of opening k exceeds the
transportation savings realized by opening k.

Using the preservation rules from Corollary 1, we can considerably reduce the
search space for any given problem instance. This is done by the preliminary pre-
servation procedure (PP) described below. For a given instance [F |C] of the SPLP,
the procedure takes two sets P i

L and P i
U (P i

L ⊆ P i
U) as input, and outputs two sets

P o
L and P o

U (P i
L ⊆ P o

L ⊆ P o
U ⊆ P i

U), such that f �
[F |C][P i

L, P
i
U] = f �

[F |C][P o
L, P o

U].
The running time of the procedure is O(m2) (Theorem 2, Goldengorin et al., 1999).

Procedure PP (P i
L, P

i
U)

begin
P o

L ← P i
L; P o

U ← P i
U ;

if P o
L = P o

U then
return (P o

U , P o
U);

Compute δ+ ← mink∈Po
U \Po

L
{f[F |C](P o

U)− f[F |C](P o
U \ {k})};

Compute δ− ← mink∈Po
U \Po

L
{f[F |C](P o

L)− f[F |C](P o
L ∪ {k})};

if δ+ � 0 then { Preservation Rule 1 }
begin

Compute r+ ← min{k : f[F |C](P o
U)− f[F |C](P o

U \ {k}) = δ+};
call PP(P o

L ∪ {r+}, P o
U);

end
else if δ− � 0 then { Preservation Rule 2 }
begin

Compute r− ← min{k : f[F |C](P o
L)− f[F |C](P o

L ∪ {k}) = δ−};
call PP(P o

L, P
o
U \ {r−});

end
else return (P o

L, P
o
U);

end;

386 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

3. The Data Correcting Algorithm

The Data Correcting Algorithm (DCA) that we propose in this paper is one that
uses a strong reduction procedure (RP, see Subsection 3.1) to reduce the original
instance into a smaller ‘core’ instance, and then uses a data correcting procedure
(DCP, see Subsection 3.2) to obtain a solution to the original instance, whose cost
is not more than a pre-specified amount α more than the cost of an optimal solution.

3.1. THE REDUCTION PROCEDURE

The first preprocessing rules for the SPLP involving both fixed costs and trans-
portation costs appeared in Khumawala (1972). In terms of Hammer functions,
these rules are stated as follows. We assume (without loss of generality) that we
cannot partition I into sets I1 and I2, and J into sets J1 and J2, such that the
transportation costs from sites in I1 to clients in J2, and from sites in I2 to clients in
J1 are not finite. We assume too, that the site indices are arranged in non-increasing
order of fi +∑

j∈J cij values. Based on the following theorem, we formulate two
preprocessing rules, namely, RO and RC.

THEOREM 3. Let H[F |C](y) be the Hammer function corresponding to the SPLP
instance [F |C] in which like terms have been aggregated. For each site index k, let
ak be the coefficient of the linear term corresponding to yk and let tk be the sum of
the coefficients of all non-linear terms containing yk. Then the following assertion
holds.

RO: If ak � 0, then there is an optimal solution y� in which y�
k = 0.

RC: If ak + tk � 0, then there is an optimal solution y� in which y�
k = 1.

Proof.

RO: Suppose ak � 0. Let us consider a vector y for which yk = 1 and a vector
y′ for which y′i = yi for each i �= k, y′k = 0. Now H[F |C](y) −H[F |C](y′) =
ak � 0. Hence y′ is preferable to y. This shows that there exists an optimal
solution y� with y�

k = 0.

RC: Next suppose that ak + tk � 0. Note that ak + tk � 0 and tk > 0 implies that
ak < 0, and tk cannot be negative for any index k, since the non-linear terms
of the Hammer function are all non-negative.

Consider two solutions y′ and y, such that y′i = yi for each i �= k, y′k = 1, and
yk = 0. Then

H[F |C](y′)−H[F |C](y)

= −fky
′
k +

n∑
j=1

m−1∑
p=1

k∈{π1j ,... ,πpj }

�c[p, j]
p∏

r=1

y′πrj
(11)

A DATA CORRECTING APPROACH FOR THE SPLP 387

which, on separating the linear and non-linear terms, yields that

= aky
′
k +

n∑
j=1

m−1∑
p=2

k∈{π1j ,... ,πpj }

�c[p, j]
p∏

r=1

y′πrj
. (12)

An upper bound to (12) is (aky
′
k + tky

′
k) which is obtained by setting y′i to

1 for each i �= k, since all non-linear terms in the Hammer function have
non-negative coefficients. Thus

H[F |C](y′)−H[F |C](y) � aky
′
k + tky

′
k = ak + tk � 0,

which makes y′ preferable to y. This shows that there is an optimal solution
y� with y�

k = 1. Of course, if y′i = 1 for each i �= k, then setting y′k = 1 leads
to an infeasible solution. �

Notice that the rules RO and RC primarily try to either open or close sites. If
it succeeds, it also changes the Hammer function for the instance, reducing the
number of non-linear terms therein. In the remaining portion of this subsection,
we describe a completely new reduction procedure (RP), whose primary aim is to
reduce the coefficients of terms in the Hammer function, and if we can reduce it to
zero, to eliminate the term from the Hammer function. This procedure is based on
fathoming rules of branch and bound algorithms and data correcting principles.

Let us assume that we have an upper bound (UB) on the cost of an optimal
solution for the given SPLP instance. This can be obtained by running a heuristic
on the problem data. Now consider any non-linear term s

∏k
r=1 yπrj

in the Hammer
function. This term will contribute to the cost of a solution, only if plants are not
located in any of the sites π1j , . . . , πkj . Let LB be a lower bound on the optimal
solution of the SPLP with respect to the subproblem for which no facilities are loc-
ated in the sites π1j , . . . , πkj . If LB � UB, then we cannot make any judgement
about this term. On the other hand, if LB > UB, then we know that there cannot
be an optimal solution with yπ1j = . . . = yπkj

= 1. In this case, if we reduce the
coefficient s by LB − UB − ε, (ε > 0, small), then the new Hammer function
and the original one have identical sets of optimal solutions. If after the reduction,
s is non-positive, then the term can be removed from the Hammer function. Such
changes in the Hammer function alter the values of tk, and can possibly allow us
to use Khumawala’s rules to close certain sites. Once some sites are closed, some
of the linear terms in the Hammer function change into constant terms, and some
of the quadratic terms change into linear ones. These changes cause changes in
both the ak and the tk values, and can make further application of Khumawala’s
rules possible, thus preprocessing some other sites, and making further changes in
the Hammer function. A pseudocode of the reduction procedure (RP) is provided
below.

388 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

Procedure RP (H[F |C](y))
begin

repeat
Compute an upper bound UB for the instance;
for each nonlinear term s

∏k
r=1 yπrj

in H[F |C](y) do
begin

Compute lower bound LB on the cost of solutions in
which plants are not located in sites π1j , . . . , πkj ;
if LB > UB then

Reduce the coefficient of the term by
min{s, LB − UB − ε};

Apply Khumawala’s rules until no further preprocessing
is possible;
Recompute the Hammer function H[F |C](y);

until no further preprocessing of sites was achieved in the
current iteration;

end;

Let us consider the application of all preprocessing rules to the example from
Section 2.1 with the Hammer function H[F |C](y) = 59− 8y1 − y2 − 3y3 − 4y4 +
2y1y2 + 4y1y4 + 8y3y4 + 21y1y2y4 + 4y2y3y4. The values of ak, tk and ak + tk are
as follows:

k : 1 2 3 4
ak : −8 −1 −3 −4
tk : 27 27 12 37
ak + tk : 19 26 9 33

It is clear that neither RO nor RC is applicable here, since the coefficient of the
term 21y1y2y4 is too large. Therefore, we try to reduce this coefficient by applying
the RP.

The upper bound UB = 51 to the original problem can be obtained by setting
y1 = y4 = 1 and y2 = y3 = 0. A lower bound to the subproblem under the
restriction y1 = y2 = y4 = 1 is 73, since H[F |C](1, 1, 0, 1) = 73. Note that
UB and LB are calculated here for different subproblems. In virtue of RP, we can
reduce the coefficient of 21y1y2y4 by 73 − 51 − ε = 20, so that the new Hammer
function, with the same set of optimal solutions as the original function, becomes
H ′(y) = 59−8y1−y2−3y3−4y4+2y1y2+4y1y4+8y3y4+1y1y2y4+4y2y3y4.

A DATA CORRECTING APPROACH FOR THE SPLP 389

The updated values of ak , tk , and ak + tk are presented below.

k : 1 2 3 4
ak : −8 −1 −3 −4
tk : 7 7 12 17
ak + tk : −1 6 9 13

RC can immediately be applied in this situation to set y1 = 1. After updating
H ′(y), we can apply RO and set y2 = y4 = 0. This allows us to apply RC again to
set y3 = 1, yielding the optimal solution (1, 0, 1, 0) with cost 48.

3.2. THE DATA CORRECTING PROCEDURE

Let us suppose that the preliminary preservation (PP) procedure is applied to the
SPLP instance [F |C]. On termination, it outputs two subsets P o

L and P o
U , ∅ ⊂

P o
L ⊆ P o

U ⊆ I . If P o
L = P o

U , then the instance is said to have been solved by
this procedure, and the set P o

L is an optimal solution. Since the PP procedure is a
polynomial time algorithm, instances that it solves to optimality constitute a class
of algorithmically defined polynomially solvable instances. We call such instances
PP-solvable. We use this class of polynomially solvable instances in our algorithm,
since it is one of the best among the polynomially solvable cases discussed in
Goldengorin (1995).

Next suppose that the given instance is not PP-solvable. In that case we try to
extend the idea of the PP procedure to obtain a solution such that the difference
between its cost and the cost of an optimal solution is bounded by a pre-defined
value α. This is the basic idea behind the data correcting procedure.

We will introduce a few notations to improve the readability of this subsection.
Consider the SPLP instance [F |C] and two sets PL, PU ⊆ I such that PL ⊂ PU .
Let

δ−k = f[F |C](PL)− f[F |C](PL ∪ {k}) for each k ∈ PU \ PL,

δ− = min{δ−k : k ∈ PU \ PL},
r− = min{k : δ−k = δ−, k ∈ PU \ PL},
δ+k = f[F |C](PU)− f[F |C](PU \ {k}) for each k ∈ PU \ PL,

δ+ = min{δ+k : k ∈ PU \ PL},
r+ = min{k : δ+k = δ+, k ∈ PU \ PL}.

Note that δ−k = −ak and δ+k = ak + tk (see Goldengorin, 1995). Therefore, these
quantities can be calculated very efficiently when one uses a Beresnev function
representation of the SPLP. Lemma 1 is a restatement of the preservation rules in
Corollary 1.

LEMMA 1. Consider PL, PU ⊆ I , such that ∅ ⊂ PL ⊂ PU ⊆ I . Let k ∈ PU \PL,
and let PA be an arbitrary subset of I . Then the following holds.

390 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

(a) If δ−k � 0 and f[F |C](PA)− f �
[F |C][PL, PU \ {k}] � γ � α, then f[F |C](PA)−

f �
[F |C][PL, PU] � γ � α; and

(b) if δ+k � 0 and f[F |C](PA)− f �
[F |C][PL ∪ {k}, PU] � γ � α, then f[F |C](PA)−

f �
[F |C][PL, PU] � γ � α.

In case both δ− and δ+ are strictly positive, then Lemma 1 is no longer applicable,
and the PP procedure terminates. If δ = min(δ−, δ+) � α, we could however
correct the data of the instance so that either the costs of all solutions P , PL ⊆ P ⊆
PU \{k} increase by δ−, or the costs of all solutions P , PL∪{k} ⊆ P ⊆ PU increase
by δ+, and Lemma 1 becomes applicable again. The solution that we hope to obtain
by this correcting procedure will have an accuracy of δ according to Theorem 1.
Instead of changing the data in the instance, we may equivalently decrease the
allowable accuracy value from α to α − δ. This gives rise to Lemma 2.

LEMMA 2. Consider PL, PU ⊆ I , such that ∅ ⊂ PL ⊂ PU ⊆ I . Let k ∈ PU \PL,
and let PA be an arbitrary subset of I . Then the following holds.
(a) If 0 � δ−k � α and f[F |C](PA) − f �

[F |C][PL, PU \ {k}] � γ � α − δ−k , then
f[F |C](PA)− f �

[F |C][PL, PU] � γ + δ−k � α; and
(b) if 0 � δ+k � α and f[F |C](PA) − f �

[F |C][PL ∪ {k}, PU] � γ � α − δ+k , then
f[F |C](PA)− f �

[F |C][PL, PU] � γ + δ+k � α.

Proof. We prove the first part of the lemma. The proof of the second part is
similar. There are two cases to be considered.
Case 1: f �

[F |C][PL, PU] = f �
[F |C][PL, PU \ {k}]. In this case, the result follows

trivially.
Case 2: f �

[F |C][PL, PU] = f �
[F |C][PL ∪ {k}, PU]. From Theorem 2(a),

f �
[F |C][PL, PU \ {k}] − f �

[F |C][PL ∪ {k}, PU] � δ−k
⇐⇒ f �

[F |C][PL, PU \ {k}] � f �
[F |C][PL, PU] + δ−k .

The result follows. �
In case δ = min(δ−, δ+) > α, then data correction cannot guarantee a solution

within the prescribed allowable accuracy, and hence we need to use a branching
procedure.

The data correcting procedure (DCP, see below) in our algorithm takes two
sets PL, PU ⊆ I (∅ ⊂ PL ⊂ PU ⊆ I) and α as input. It outputs a solution
P γ and a bound γ , such that f[F |C](P γ) − f[F |C](P �) � γ � α, where P � is an
optimal solution to [F |C]. It is a recursive procedure, that first tries to reduce the set
PU \PL by applying Lemma 1. If Lemma 1 cannot be applied, then it tries to apply
Lemma 2 to reduce it. We do not use the reduction procedure at this stage since it
increases the computational times substantially without reducing the core problem
appreciably. If even this lemma cannot be applied, then the procedure branches on
a member k ∈ PU \ PL and invokes two instances of DCP, one with sets PL ∪ {k}

A DATA CORRECTING APPROACH FOR THE SPLP 391

and PU , and the other with sets PL and PU \ {k}. Notice that the solutions searched
by the two invocations of DCP are mutually exclusive and exhaustive. A bound
is used to remove unpromising subproblems from the solution tree. The choice of
the branching variable k ∈ PU \ PL in DCP is motivated by the observation that
ak < 0 and tk + ak > 0 for each of these indices. (These are the preconditions
of the branching rule.) A plant would have been located in this site in an optimal
solution if the coefficient of the linear term involving yk in the Hammer function
would have been increased by −ak . We could have predicted that a plant would
not be located there if the same coefficient would have been decreased by tk + ak .
Therefore we could use φk = average(−ak, tk + ak) = tk

2 as a measure of the
chance that we will not be able to predict the fate of site k in any subproblem of the
current subproblem. If we want to reduce the size of the branch and bound tree by
assigning values to such variables, then we can think of a branching function that
branches on the index k ∈ PU \ PL with the largest φi value.

Procedure DCP (PL, PU, α)
begin

if PL = PU then
return (PU , 0);

Compute δ+, δ−, r+, r−;
{ Apply Lemma 1 (Preliminary Preservation) }
if δ+ � 0 then { Lemma 1(b) }

(P γ , γ)← DCP(PL ∪ {r+}, PU , α);
else if δ− � 0 then { Lemma 1(a) }

(P γ , γ)← DCP(PL, PU \ {r−}, α);
{ Apply Lemma 2 (Data Correction) }
else if δ+ � α then { Lemma 2(b) }
begin

(P γ , γ)← DCP(PL ∪ {r+}, PU , α − δ+);
γ ← δ+;

end
else if δ− � α then { Lemma 2(a) }
begin

(P γ , γ)← DCP(PL, PU \ {r−}, α − δ−);
γ ← δ−;

end
{ Branch }
else
begin

select k ∈ P o
U \ P o

L; { Branching Rule }
if the bound obtained using the sets PL ∪ {k} and PU is better

than the best solution found so far, then
(P γ+, γ +)← DCP(PL ∪ {k}, PU , α);

392 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

if the bound obtained using the sets PL and PU \ {k} is better
than the best solution found so far, then

(P γ−, γ −)← DCP(PL, PU \ {k}, α);
P γ ← arg min{f[F |C](P γ+), f[F |C](P γ−) };
γ ← min{f[F |C](P γ+), f[F |C](P γ−)}−

min{f[F |C](P γ+)− γ +, f[F |C](P γ−)− γ −};
end

return (P γ , γ);
end;

4. Computational Experiments

The execution of the DCA can be divided into two stages, a preprocessing stage in
which the given instance is reduced to a core instance by using RP; and a solution
stage in which the core instance is solved using DCP.

In the preprocessing stage we experimented with the following three reduction
procedures.
(a) The “delta” and “omega” rules from Khumawala (1972);
(b) Procedure RP with the combinatorial Khachaturov-Minoux bound to obtain a

lower bound; and
(c) Procedure RP with the LP dual-ascent Erlenkotter bound (see Erlenkotter,

1978) to obtain a lower bound.
The Khachaturov-Minoux bound lb is a combinatorial bound for general su-

permodular functions (see Khachaturov, 1968; Minoux, 1977). It can be stated as
follows.
If f[F |C](PL)− f[F |C](PL ∪ {k}) > 0 and f[F |C](PU)− f[F |C](PU \ {k}) > 0 for all
k ∈ PU \ PL, then lb = max{lb1, lb2} where
lb1 = f[F |C](PL)−∑

k∈PU \PL
[f[F |C](PL)− f[F |C](PL ∪ {k})] and

lb2 = f[F |C](PU)−∑
k∈PU \PL

[f[F |C](PU)− f[F |C](PU \ {k})].

We also experimented with the Khachaturov-Minoux bound and the Erlenkotter
bound in the implementation of the DCP.

The effectiveness of the reduction procedure can be measured either by com-
puting the number of free locations in the core instance, or by computing the
number of non-zero nonlinear terms present in the Hammer function of the core
instance. Note that the number of non-zero nonlinear terms present in the Hammer
function is an upper bound on the number of unassigned customers in the core
instance. Tables 1 and 2 shows how the various methods of reduction perform on
the benchmark SPLP instances in the OR-Library (Beasley (1993b)). The existing
preprocessing rules due to Khumawala (1972) and Goldengorin et al. (2000) (i.e.
procedure (a), which was used in the SPLP example in Goldengorin et al. (1999))

A DATA CORRECTING APPROACH FOR THE SPLP 393

Table 1. Number of free locations after
preprocessing SPLP instances in the
OR-Library

Problem m n m after

procedure

a b c

cap71 16 50 4 0 0

cap72 16 50 6 0 0

cap73 16 50 6 3 3

cap74 16 50 2 0 0

cap101 25 50 9 0 0

cap102 25 50 13 3 0

cap103 25 50 14 0 0

cap104 25 50 12 0 0

cap131 50 50 34 32 8

cap132 50 50 27 25 5

cap133 50 50 25 19 10

cap134 50 50 19 0 0

cannot solve any of the OR-Library instances to optimality. However, the variants
of the new reduction procedure (i.e., procedures (b) and (c)) solve a large number
of these instances to optimality. Procedure (c), based on the Erlenkotter bound
is marginally better than procedure (b) in terms of the number of free locations
(Table 1), but substantially better in terms of the number of non-zero nonlinear
terms in the Hammer function (Table 2).

The information in Tables 1 and 2 can be combined to show that some of
the problems that are not solved by these procedures can actually be solved by
inspection of the core instances. For example, consider cap74. We see that the
core problem (using procedure (a)) has two free variables and one non-linear term.
Therefore the Beresnev function of the core instance looks like

A+ pyu + qyw + ryuyw,

where p, q < 0, r > 0, min{p+ r, p+ q} > 0 and A is a constant. The minima of
such functions are easy to obtain by inspection.

In addition, Tables 1 and 2 demonstrate the superiority of the new preprocessing
rule over the “delta” and “omega” rules. Consider for example the problem cap132.
The “delta” and “omega” rules reduce the problem size from m = 50 and 2389
non-zero nonlinear terms to m′ = 27 and 112 non-zero nonlinear terms. However,
the new preprocessing rule reduces the same problem to one having m′ = 5 and 3
non-zero nonlinear terms.

394 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

Table 2. Number of non-zero nonlinear terms in
the Hammer function after preprocessing SPLP
instances in the OR-Library

Problem No. of non-zero terms

Before After procedure

preprocessing a b c

cap71 699 6 0 0

cap72 699 12 0 0

cap73 699 13 2 2

cap74 699 1 0 0

cap101 1147 24 0 0

cap102 1147 33 2 0

cap103 1147 38 0 0

cap104 1147 29 0 0

cap131 2389 163 135 8

cap132 2389 112 92 3

cap133 2389 101 60 11

cap134 2389 62 0 0

In order to test the effect of bounds in the DCA, we compared the execution
times of DCA using the two bounds on some difficult problems of the type sug-
gested in Körkel (1989) (see Subsection 4.4 for more details). The problems were
divided into seven sets. Each set consists of five problems, each having 65 sites and
65 clients (see Subsection 4.4 for more details regarding these problems). From
Table 3 we see that the Erlenkotter bound reduces the execution time taken by
the Khachaturov-Minoux bound (that was used in the SPLP example in Golden-
gorin et al. (1999)) by a factor more than 100. This is not surprising, since the
Khachaturov-Minoux bound is derived for a general supermodular function, while
the Erlenkotter bound is specific to the SPLP.

We report our computational experience with the DCA on several benchmark
instances of the SPLP in the remainder of this section. The performance of the
algorithm is compared with that of the algorithms described in the papers that sug-
gested these instances. We implemented the DCA in PASCAL, compiled it using
Prospero Pascal, and ran it on a 733 MHz Pentium III machine. The computation
times we report are in seconds on our machine.

4.1. BILDE AND KRARUP-TYPE INSTANCES

These are the earliest benchmark problems that we consider here. The exact in-
stance data is not available, but the process of generating the problem instances is

A DATA CORRECTING APPROACH FOR THE SPLP 395

Table 3. Comparison of bounds used with the DCA on
Körkel-type instances with m = n = 65

Problem Execution time of the DCP (sec)

set Khachaturov-Minoux bound Erlenkotter Bound

Set 1 119.078 0.022

Set 2 290.388 0.040

Set 3 458.370 0.056

Set 4 158.386 0.054

Set 9 428.598 0.588

Set 10 542.530 0.998

Set 11 479.092 2.280

Table 4. Description of the instances in Bilde and Krarup (1977)

Type m n fi cij

B 50 100 Discrete uniform (1000, 10000) Discrete uniform (0, 1000)

C 50 100 Discrete uniform (1000, 2000) Discrete uniform (0, 1000)

Dq † 30 80 Identical, 1000×q Discrete uniform (0, 1000)

Eq † 50 100 Identical, 1000×q Discrete uniform (0, 1000)

† q = 1, . . . , 10.

described in Bilde and Krarup (1977). There are 22 different classes of instances,
and Table 4 summarizes their characteristics.

In our experiments we generated 10 instances for each of the types of problems,
and used the mean values of our solutions to evaluate the performance of our al-
gorithm with the one used in Bilde and Krarup (1977). In our implementation, we
used reduction procedure (b) and the Khachaturov-Minoux bound in the DCP.

The reduction procedure was not useful for these instances, but the DCA could
solve all the instances in reasonable time. The results of our experiments are presen-
ted in Table 5. The performance of the algorithm implemented in Bilde and Krarup
(1977) was measured in terms of the number of branching operations performed
by the algorithm and its execution time in CPU seconds on a IBM 7094 machine.
We estimate the number of branching operations by our algorithm as the logarithm
(to the base 2) of the number of subproblems it generated. From the table we see
that the DCA reduces the number of subproblems generated by the algorithm in
Bilde and Krarup (1977) by several orders of magnitude. This is especially in-
teresting because Bilde and Krarup use a bound (discovered in 1967) identical
to the Erlenkotter bound in their algorithm (see Körkel, 1989) and we use the

396 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

Table 5. Results from Bilde and Krarup-type instances

Problem DCA Bilde and Krarup

type Branching CPU time Branching CPU Ttime†

B 11.72 0.67 43.3 4.33

C 17.17 14.81 � >250

D1 13.80 0.65 216 11

D2 12.13 0.38 218 24

D3 10.87 0.19 169 19

D4 10.25 0.15 141 17

D5 9.24 0.07 106 14

D6 8.99 0.09 101 15

D7 8.79 0.09 83 13

D8 8.60 0.09 55 11

D9 8.15 0.07 47 11

D10 7.29 0.03 43 11

E1 18.66 35.28 1271 202

E2 16.14 8.64 1112 172

E3 14.59 3.81 384 82

E4 13.65 2.74 258 65

E5 12.73 2.01 193 53

E6 11.82 0.90 136 43

E7 10.82 0.53 131 42

E8 10.79 0.68 143 48

E9 10.62 0.76 117 44

E10 10.36 0.69 79 37

† IBM7094 s.

� Could not be solved in 250 s.

Khachaturov-Minoux bound. The CPU time required by the DCA to solve these
problems were too low to warrant the use of any α > 0.

4.2. GALVÃO AND RAGGI-TYPE INSTANCES

Galvão and Raggi (1989) developed a general 0-1 formulation of the SPLP and
presented a three-stage method to solve it. The benchmark instances suggested in
this work are unique, in that the fixed costs are assumed to come from a Normal
distribution rather than the more commonly used Uniform distribution. The trans-
portation costs for an instance of size m×n with m = n are computed as follows. A
network, with a given arc density δ is first constructed, and the arcs in the network
are assigned lengths sampled from a uniform distribution in the range [1, n] (except

A DATA CORRECTING APPROACH FOR THE SPLP 397

Table 6. Description of the instances in Galvão and Raggi
(1989)

Problem size Density Fixed costs’ parameters

(m = n) δ Mean Standard deviation

10 0.300 4.3 2.3

20 0.150 9.4 4.8

30 0.100 13.9 7.4

50 0.061 25.1 14.1

70 0.043 42.3 20.7

100 0.025 51.7 28.9

150 0.018 186.1 101.5

200 0.015 149.5 94.4

for n = 150, where the range is [1, 500]). The transportation cost from i to j is
the length of the cheapest path from i to j . The problem characteristics provided
in Galvão and Raggi (1989) are summarized in Table 6.

As with the data in Bilde and Krarup (1977), the exact data for the instances are
not known. So we generated 10 instances for each problem size, and used the mean
values of the solutions for comparison purposes. In our DCA implementation, we
used reduction procedure (b) and the Khachaturov-Minoux bound in the DCP. The
comparative results are given in Table 7. Since the computers used are different, we
cannot make any comments on the relative performance of the solution procedures.
However, since the average number of subproblems generated by the DCA is al-
ways less than 10 for each of these instances, we can conclude that these problems
are easy for our algorithm. In fact they are too easy for the DCA to warrant α > 0.

Notice that the average number of opened plants in the optimal solutions to
the instances we generated is quite close to the number of opened plants in the op-
timal solutions reported in Galvão and Raggi (1989). Also notice that the reduction
procedure was quite effective — it solved 35 of the 80 instances generated.

4.3. INSTANCES FROM THE OR-LIBRARY

The OR-Library (Beasley, 1993b) has a set of instances of the SPLP. These in-
stances were solved in Beasley (1993a) using an algorithm based on the Lag-
rangian heuristic for the SPLP. Here too, we used reduction procedure (b) and
the Khachaturov-Minoux bound in the DCP. We solved the problems to optimality
using the DCA. The results of the computations are provided in Table 8. The exe-
cution times suggest that the DCA is faster than the Lagrangian heuristic described
in Beasley (1993a). The reduction procedure was also quite effective for these
instances, solving four of the 16 instances to optimality, and reducing the number

398 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

Table 7. Results from Galvão and Raggi-type instances

Problem DCA Galvão and Raggi

Size No. solved by No. of sub- CPU No. of open CPU No. of open

(m = n) preprocessing problems† time† plants† time� plants

10 6 2.3 <0.001 4.7 <1 3

20 5 2.4 <0.001 9.0 <1 8

30 7 1.8 0.002 13.6 1 11

50 7 2.6 0.002 20.3 2 20

70 2 3.8 0.004 28.8 6 31

100 3 3.5 0.011 41.1 6 44

150 1 7.8 0.010 64.4 25 74

200 4 2.9 0.158 81.8 63 84

† Average over 10 instances.

� IBM 4331 s.

Table 8. Results from OR-Library instances

Problem m n DCA CPU time No. of

name m after pre- No, of sub- CPU (Beasley)† open

processing problems time plants

cap71 16 50 � 0 <0.01 0.11 11

cap72 16 50 � 0 <0.01 0.08 9

cap73 16 50 � 0 <0.01 0.11 5

cap74 16 50 � 0 <0.01 0.05 4

cap101 25 50 9 6 <0.01 0.18 15

cap102 25 50 13 16 <0.01 0.16 11

cap103 25 50 14 16 <0.01 0.14 8

cap104 25 50 12 7 0.01 0.11 4

cap131 50 50 34 196 0.01 0.31 15

cap132 50 50 27 183 0.02 0.28 11

cap133 50 50 25 71 <0.01 0.29 8

cap134 50 50 19 25 <0.01 0.15 4

� Instance solved by preprocessing only.

† Cray-X-MP/28 s.

of free sites appreciably in the other instances. Once again the use of α > 0 cannot
be justified, considering the execution times of the DCA.

A DATA CORRECTING APPROACH FOR THE SPLP 399

Table 9. Description of the fixed costs for instances in Körkel (1989)

Problem set No. of instances Fixed cost for ith instance

Set 1 5 Identical, set at 141+ 6.6i

Set 2 5 Identical, set at 174+ 6.6i

Set 3 5 Identical, set at 207+ 6.6i

Set 4 5 Identical, set at 174+ 66i

Set10 5 Identical, set at 7170 + 660i

Set11 5 Identical, set at 7120.5+ 333.3i

Set12 5 Identical, set at 8787 + 333.3i

4.4. KÖRKEL-TYPE INSTANCES WITH 65 SITES

Körkel (1989) described several relatively large Euclidean SPLP instances (m =
n = 100, and m = n = 400) and used a branch and bound algorithm to solve these
problems. The bound used in that work is an improvement on a bound based on the
dual of the linear programming relaxation of the SPLP due to Erlenkotter (1978)
and is extremely effective. The bound due to Erlenkotter (1978) is very effective
because, for a large majority of SPLP instances, the optimal solution to the dual of
the linear programming relaxation of the SPLP is integral. In this subsection, we
use instances that have the same cost structure as the ones in Körkel (1989) but for
which m = n = 65. Instances of this size were not dealt with in Körkel (1989).
We used reduction procedure (b) for the RP, and the Khachaturov-Minoux bound
in the DCP.

In Körkel (1989), 120 instances of each problem size are described. These can
be divided into 28 sets (the first 18 sets contain five instances each, and the rest
contain three instances each). We solved all the 120 instances we generated, and
found out that the instances in Sets 1, 2, 3, 4, 10, 11, and 12 are more difficult to
solve than others. We therefore used these instances in the experiments in this sec-
tion. The transportation cost matrix for a Körkel instance of size n×n is generated
by distributing n points in random within a rectangular area of size 700×1300 and
calculating the Euclidean distances between them. The fixed cost are computed as
in Table 9.

The values of the results that we present for each set is the average of the values
obtained for all the instances in that set. Interestingly, the preprocessing rules were
found to be totally ineffective for all of these problems. Since the fixed costs are
identical for all the sites, the sites are distributed randomly over a region, and the
variable cost matrix is symmetric, no site presents a distinct advantage over any
other. This prevents our reduction procedure to open or close any site. Table 10

400 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

Table 10. Costs of solutions output by the DCA on Körkel-type instances with 65 sites

Problem Optimal Acceptable accuracy�

set 1% 2% 3% 5% 10%

Set 1 6370.0 6404.8 6450.6 6480.6 6569.2 6781.0

Set 2 6920.6 6952.2 6971.4 7028.4 7123.8 7320.2

Set 3 7707.4 7738.0 7770.2 7797.6 7854.6 8053.8

Set 4 9601.2 9642.4 9680.2 9698.4 9786.6 9932.0

Set10 146691.2 146896.6 146909.6 147543.6 148062.0 151542.2

Set11 168598.4 168858.2 169655.0 170341.6 170597.0 173913.8

Set12 186386.3 186729.7 187112.0 188002.7 188854.2 192528.7

� As a percentage of the optimal cost.

Table 11. Execution times for the DCA on Körkel-type instances with 65 sites

Problem Optimal Acceptable accuracy�

Set 1% 2% 3% 5% 10%

Set 1 119.078 90.948 70.758 55.494 43.200 20.426

Set 2 290.388 225.108 172.422 145.828 96.240 36.966

Set 3 458.370 339.420 259.022 203.036 150.216 50.378

Set 4 158.386 129.694 109.754 89.666 65.548 30.058

Set10 428.598 370.120 319.804 283.832 230.078 142.090

Set11 542.530 476.350 418.628 408.594 290.338 160.744

Set12 479.092 416.472 370.832 326.572 261.835 149.038

� As a percentage of the optimal cost.

shows the variation in the costs of the solution output by the DCA with changes in
α, and Table 11 shows the corresponding decrease in execution times.

The effect of varying the acceptable accuracy α on the cost of the solutions
output by the DCA is also presented graphically in Figure 1. We define the achieved
accuracy β as

β = cost of solution output by the DCA− cost of optimal solution

cost of optimal solution

and the relative time τ as

τ = execution time for the DCA for acceptable accuracy α

execution time for the DCA to compute an optimal solution

A DATA CORRECTING APPROACH FOR THE SPLP 401

Figure 1. Performance of the DCA for Körkel-type instances with 65 sites.

Note that the achieved accuracy β varies almost linearly with α, with a slope
close to 0.5. Also note that the relative time τ of the DCA reduces with increasing
α. The reduction is slightly better than linear, with an average slope of -8.

4.5. KÖRKEL INSTANCES WITH 100 SITES

We solved the benchmark instances in Körkel (1989) with m = n = 100 to op-
timality and observed that the instances in Sets 10, 11, and 12 required relatively
longer execution times. So we restricted further computations to instances in those
sets. The fixed and transportation costs for these problems are computed in the
procedure described in Subsection 4.4. Tables 12 and 13 show the results obtained

402 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

Table 12. Costs of solutions output by the DCA on Körkel-type instances with 100 sites

Problem Optimal Acceptable accuracy�

Set 1% 2% 3% 5% 10%

Set10 190782.0 191550.8 192755.4 192080.6 195983.2 203934.2

Set11 219583.4 220438.8 222393.6 221947.2 228467.2 235963.4

Set12 240402.4 241609.6 243336.8 244209.4 247417.6 259168.6

� As a percentage of the optimal cost.

Table 13. Execution times for the DCA on Körkel-type instances with 100
sites

Problem Optimal Acceptable accuracy�

Set 1% 2% 3% 5% 10%

Set10 133.746 91.774 65.99 65.908 44.2 32.074

Set11 81.564 55.356 39.554 38.348 33.628 17.598

Set12 111.272 85.858 65.608 55.928 61.758 33.014

� As a percentage of the optimal cost.

by running the DCA on these problem instances. In our DCA implementation for
solving these instances, we used reduction procedure (c) and the Erlenkotter bound
in the DCP.

Figure 2 illustrates the effect of varying the acceptable accuracy α on the cost of
the solutions output by the DCA for the instances mentioned above. The nature of
the graphs is similar to those in Figure 1. However, in several of the instances we
noticed that β reduced when α is increased, and in some other instances τ increased
when α was increased.

5. Conclusions

In this paper we tailor the general data correcting algorithm (DCA) for supermod-
ular functions (see Goldengorin et al., 1999) to the simple plant location problem
(SPLP). This algorithm consists of two procedures, a reduction procedure to reduce
the original instance to a smaller ‘core’ instance, and a data correcting procedure
to solve the core instance.

Theorem 1 can be considered as the basis of data correcting. It states that for two
different instances of the SPLP of the same size, the difference between the costs
of the unknown optimal solutions for these instances is bounded by a polynomially
calculated distance between these instances. This distance is used to correct one of

A DATA CORRECTING APPROACH FOR THE SPLP 403

Figure 2. Performance of the DCA for Körkel-type instances with 100 sites.

these instances in an implicit way by just correcting the value of the given accuracy
parameter in the DCA.

An important contribution of this paper is a new reduction procedure, which
when implemented in the DCA yields to a substantial reduction in the size of
the original instance. This reduction procedure is much more powerful than the
“delta” and “omega” reduction rules in Khumawala (1972). It also incorporates
the Erlenkotter bound specific to the SPLP (see Erlenkotter, 1978), which is more
computationally efficient than the bound used in Goldengorin et al. (1999). The
strength of the new reduction procedure based on the Erlenkotter bound is made
obvious by the observation that none of the instances in the OR-Library could
be solved by the “delta" and “omega" rules to optimality, but the new reduction

404 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

procedure solves 75% of them to optimality, and preprocesses at least twice the
number of sites as the “delta” and “omega” rules for the remaining 25% of the
instances. Another contribution of the paper is the incorporation of the Erlenkotter
bound to the recursive branch-and-bound type data correcting procedure.

We have compared the performance of the Erlenkotter bound implemented in
an usual branch-and-bound type algorithm (see Bilde and Krarup, 1977) and the
Khachaturov-Minoux bound implemented in the DCP for the new reduction rule
and for fathoming subproblems created by the DCP. On the instances in Bilde and
Krarup (1977), the number of subproblems created by the branch-and-bound type
algorithm with Erlenkotter bound is found to be more than 1000 times the number
of subproblems created by the DCP based on the Khachaturov-Minoux bound.

We have tested the DCA on a broad range of different classes of instances
available in the literature (Bilde and Krarup, 1977; Galvão and Raggi, 1989; OR-
Library, Körkel, 1989). The striking computational result is the ability of the DCA
to find exact solutions for many relatively large instances within fractions of a
second. For example, an exact global optimum of the 200×200 instances from
Galvão and Raggi (1989) was found within 0.2 s on a PC with a 733 MHz pro-
cessor.

In all of our implementations for the DCA with Khachaturov-Minoux and Er-
lenkotter bounds we have used data structures induced by pseudo–Boolean repres-
entations of the SPLP due to Hammer (1968) (see also Beresnev (1973)). These
data structures are conducive to efficient updating for the current subproblems
in the DCA and sometimes show that a current subproblem remaining after ap-
plication of the new reduction procedure has relatively small numbers of linear
and non-linear terms in the corresponding Hammer function and therefore can be
solved by any branch-and-bound type algorithm for the SPLP.

We have found that for all instances in Körkel (1989) the “delta” and “omega”
reduction rules were totally ineffective since none of the sites presented any distinct
advantage over any other (the fixed costs are almost identical for all sites, the
sites are distributed randomly over a region, and the transportation costs matrix
is symmetric). Anyway, the DCA has solved to optimality all the instances with
m = n = 100 within fractions of a second except for the instances in Sets 10, 11
and 12 which required relatively longer execution times. On these sets of instances
we have studied the behavior of the execution time and calculated the accuracy for
acceptable values of α. When the acceptable value of α increases, we see that the
costs of the solutions output by the DCA generally worsen, but the execution times
also decrease.

In summary, our computational experience with the DCA on several benchmark
instances known in the literature suggest that the algorithm compares well with
other algorithms known for the problem. However, like any other branch-and-
bound algorithm, DCA depends heavily on the quality of the bounds used. We
believe that this algorithm merits serious consideration as a solution tool for the
SPLP.

A DATA CORRECTING APPROACH FOR THE SPLP 405

6. Acknowledgements

The authors thank the anonymous referees and Prof. Panos Pardalos for their use-
ful comments which improved the presentation of the results in this paper. The
first author gratefully acknowledges the financial support of DIMACS, granted in
December 2000.

References

Balas, E. and Padberg, M.W. (1972), On the set covering problem, Operations Research 20: 1152–
1161.

Beasley, J.E. (1993a), Lagrangian heuristics for location problems, European Journal of Operational
Research 65: 383–399.

Beasley, J.E. (1993b), OR-Library, http://mscmga.ms.ic.ac.uk/info.html
Bilde, O. and Krarup, J. (1977), Sharp lower bounds and efficient algorithms for the simple plant

location problem, Annals of Discrete Mathematics 1: 79–97.
Beresnev, V.L. (1973), On a Problem of mathematical Standardization theory, Upravliajemyje

Sistemy 11: 43–54 (in Russian).
Beresnev, V.L., Gimadi, E.Kh. and Dementyev, V.T. (1978), Extremal Standardization Problems,

Nauka, Novosibirsk (in Russian).
Cho, D.C., Johnson, E.L., Padberg. M.W. and Rao M.R. (1983a), On the uncapacitated plant location

problem, I: Valid inequalities and facets, Mathematics of Operations Research 8: 579–589.
Cho, D.C., Padberg, M.W. and Rao, M.R. (1983b), On the Uncapacitated plant location problem, II:

facets and lifting theorems, Mathematics of Operations Research 8: 590–612.
Christofides, N. (1975), Graph Theory: An Algorithmic Approach, Academic Press, London.
Cornuejols, G., Fisher, M.L. and Nemhauser, G.L. (1977a), On the uncapacitated location problem,

Annals of Discrete Mathematics 1: 163–177.
Cornuejols, G., Fisher, M.L. and Nemhauser, G.L. (1977b), Location of bank accounts to optimize

float: An analytic study of exact and approximate algorithms, Management Science 23: 789–810.
Cornuejols, G. and Thizy, J.M. (1982), A primal approach to the simple plant location problem,

SIAM Journal on Algebraic and Discrete Methods 3: 504–510.
Cornuejols, G., Nemhauser, G.L. and Wolsey, L.A. (1990), The uncapacitated facility location

problem. In: Mirchandani, P.B. and Francis, R.L. (Eds.) Discrete Location Theory, Wiley-
Interscience, New York, pp. 119–171.

Erlenkotter, D. (1978), A dual-based procedure for uncapacitated facility location, Operations
Research 26: 992–1009.

Galvão, R.D. and Raggi, L.A. (1989), A method for solving to optimality uncapacitated location
problems, Annals of Operations Research 18: 225–244.

Garfinkel, R.S., Neebe, A.W. and Rao, M.R. (1974), An algorithm for the M-median plant location
problem, Transportation Science 8, 217–236.

Goldengorin, B. (1983), A correcting algorithm for solving some discrete optimization problems,
Soviet Math. Doklady 27: 620–623.

Goldengorin, B. (1995), Requirements of Standards: Optimization Models and Algorithms, ROR,
Hoogezand, The Netherlands.

Goldengorin, B., Sierksma, G., Tijssen, G.A. and Tso, M. (1999), The data-correcting algorithm for
minimization of supermodular functions, Management Science 45: 1539–1551.

Goldengorin, B., Ghosh, D. and Sierksma, G. (2000), Equivalent instances of the simple plant
location problem, SOM Research Report-00A54, University of Groningen, The Netherlands.

Goldengorin, B., Ghosh, D. and Sierksma, G. (2001), Improving the efficiency of branch and
bound algorithms for the simple plant location problem, In Proceedings of the 5th Interna-

406 GOLDENGORIN, TIJSSEN, GHOSH, AND SIERKSMA

tional Workshop on Algorithm Engineering (WAE2001), Lecture Notes in Computer Science
2141: 106–117.

Hammer, P.L. (1968), Plant Location — a pseudo–boolean approach, Israel Journal of Technology
6: 330–332.

Held, M.P., Wolfe, P. and Crowder, H.P. (1974), Validation of subgradient optimization, Mathemat-
ical Programming 6: 62–88.

Jones, P.C., Lowe, T.J., Muller, G., Xu, N., Ye, Y. and Zydiak, J.L. (1995), Specially structured
uncapacitated facility location problems, Operations Research 43: 661–669.

Khachaturov, V.R. (1968), Some problems of the consecutive calculation method and its applica-
tions to location problems, Ph.D thesis, Central Economics & Mathematics Institute, Russian
Academy of Sciences, Moscow (in Russian).

Khumawala, B.M. (1972), An efficient branch and bound algorithm for the warehouse location
problem, Management Science 18: B718–B731.

Körkel, M. (1989), On the exact solution of large-scale simple plant location problems. European
Journal of Operational Research 39: 157–173.

Krarup, J. and Pruzan, P.M. (1983), The simple plant location problem: A survey and synthesis,
European Journal of Operational Research 12: 36–81.

Labbé, M. and Louveaux, F.V. (1997), Location problems. In: Dell’Amico, M. Maffioli, F. and Mar-
tello, S. (eds.), Annotated Bibliographies in Combinatorial Optimization, John Wiley & Sons,
New York pp. 264–271.

Minoux, M. (1977), Accelerated greedy algorithms for maximizing submodular set functions. In:
Stoer J. (ed.), Actes Congres IFIP, Springer, Berlin, pp. 234–243.

Morris, J.G. (1978), On the extent to which certain fixed charge depot location problems can be
solved by LP, Journal of the Operational Research Society 29: 71–76.

Mukendi, C. (1975), Sur l’Implantation d’Équipement dans un Réscau: Le Problème de m-Centre,
PhD Thesis, University of Grenoble, France.

Pentico, D.W. (1976), The assortment problem with nonlinear cost functions, Operations Research
24: 1129–1142.

Pentico, D.W. (1988), The discrete two-dimensional assortment problem, Operations Research
36: 324–332.

Revelle, C.S. and Laporte, G. (1996), The plant location problem: New models and research
prospects, Operations Research 44: 864–874.

Schrage, L. (1975), Implicit representation of variable upper bounds in linear programming,
Mathematical Programming Study 4: 118–132.

Tripathy, A., Süral, H. and Gerchak, Y. (1999), Multidimensional assortment problem with an
application, Networks 33, 239–245.

Trubin, V.A. (1969), On a method of solution of integer programming problems of a special kind,
Soviet Math. Doklady 10: 1544–1546.

